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ABSTRACT  

To address the problems of low search efficiency, long time-consuming planning and poor adaptability to 

narrow passages of the original Hybrid A* algorithm in path planning for intelligent grain transfer vehicles in 

grain depot scenarios, a Hybrid A* algorithm with variable resolution and variable step size is proposed. First, 

the dual-heuristic function and the cost function with steering and reversing penalties are reasonably designed 

to ensure that the algorithm can search for a derivable path. Second, the distance cost based on the KD-Tree 

algorithm is combined into the node extension, and the node extension is performed using variable resolution 

and variable step size according to the change of the distance cost to improve the node search efficiency. 

Then, Reeds-Shepp curve search fitting is used to pinpoint the target point pose. The simulation validation 

results show that the improved Hybrid A* algorithm reduces the number of search nodes by 83% and the 

planning time by 37% in simple maps, while the number of search nodes and the planning time are reduced 

by 80.6% and 56.6%, respectively, in complex maps, which improves the path search efficiency. After the real-

vehicle test, the improved Hybrid A* algorithm reduces by 52.9% and 61.4% in terms of the number of search 

nodes and planning time consumed, respectively, and there is a significant improvement in the planning 

efficiency, which enhances the operational efficiency of the grain transfer vehicle. 

 

摘要   

针对粮库场景中智能粮食转运车辆在路径规划时原始 Hybrid A*算法存在搜索效率低、规划耗时长及狭窄通道

适应性差等问题，提出一种变分辨率和变步长的 Hybrid A*算法。首先，合理设计双启发函数与含有转向和倒

车惩罚的代价函数，保证算法能够搜索到一条可行驶的路径。其次，将基于 KD-Tree 算法的距离代价结合到节

点扩展中，根据距离代价的变化使用变分辨率和变步长进行节点扩展，提高节点搜索效率。然后，采用 Reeds-

Shepp 曲线搜索拟合精确定位目标点位姿。仿真验证结果表明，在简单地图中，改进 Hybrid A*算法的搜索节

点数量缩短了 83%，规划耗时缩短了 37%；在复杂地图中，搜索节点数量和规划耗时分别缩短了 80.6%，

56.6%，，提高了路径搜索效率。经过实车试验，改进 Hybrid A*算法在搜索节点数量和规划耗时方面分别缩短

了 52.9%、61.4%，规划效率有明显提升，从而提升了粮食转运车辆的运行效率。 

 

INTRODUCTION 

Granaries are a critical component of food storage (Nayak et al., 2020). However, traditional grain depots 

face several challenges in the processing and transfer of residual grain. These include narrow passages, 

complex environments with numerous grain piles, and reliance on manually operated vehicles for 

transportation, which results in low efficiency and high operational costs. In order to overcome this problem, 

intelligent grain transfer vehicle has gradually become a research hotspot (Teng et al., 2023). By integrating 

advanced sensors, high-precision positioning system and intelligent decision-making module (Peng et al., 

2021), the intelligent grain transfer vehicle can quickly and accurately sense the obstacles in the known 

surrounding environment and make obstacle avoidance decisions.  
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The movement of the intelligent grain transporter is inseparable from the path planning, and a good path 

planning algorithm can improve the efficiency of the transporter and reduce the waste of grain. At the same 

time, the application of automatic driving technology to the residual grain transfer in grain depot scenarios is 

of great significance in guaranteeing the quality of grain and the construction of smart grain depots (Tang et 

al., 2024).  

Path planning, as one of the key technologies in autonomous driving technology, is to generate optimal 

paths that satisfy collision avoidance constraints, kinematic constraints (e.g., minimum turning radius and 

speed constraints), and dynamic constraints such as acceleration constraints, deceleration constraints in 

structured roads (e.g., urban roads) or unstructured road scenes (e.g., harbors, grain warehouses, etc.) (Xiong 

et al., 2020), which is of great significance to improve vehicle driving safety and the efficiency of residual grain 

transfer in grain warehouses. At present, the commonly used path planning algorithms include three major 

categories: ant colony algorithm (Wu et al., 2023) based on machine learning method, PRM algorithm (Huang 

et al., 2024) and RRT algorithm (Yin et al., 2023) based on sampling method, and Dijkstra algorithm (Dijkstra, 

2022) and A* algorithm (He et al., 2022) based on graph search method. However, none of these path planning 

algorithms consider vehicle kinematic characteristics when planning paths, resulting in limitations of the 

planned paths in grain depot scenarios. For this reason, Dolgov et al. proposed the Hybrid A* algorithm that 

considers satisfying the vehicle kinematic characteristics, which is able to plan a driving path close to the global 

optimum due to its novel node extension, but its planned paths will suffer from the problems of curvature not 

being able to maintain continuity, poor quality of the paths, and inefficient searching, which is still difficult to 

satisfy the practical needs (Dolgov et al., 2010). Therefore, some scholars are attracted to study the Hybrid A* 

algorithm. Aiming at the problems that the curvature of the paths planned by Hybrid A* algorithm cannot be 

kept continuous, the path quality is poor and the search efficiency is low, scholars carry out the improvement 

research from the aspects of path quality and search efficiency.  

In the realm of path quality enhancement, diversified methodologies have been proposed to address 

trajectory optimization. Deng et al. (Deng et al., 2022) implemented a segmented spline curve optimization 

framework based on quadratic programming, while Zhang (Zhang, 2024) investigated the motion trajectory of 

warehouse robots by deriving spatial kinematic equations and introducing an enhanced Ant Colony 

Optimization-Dynamic Window Approach (ACO-DWA) algorithm. Ren et al. (Ren et al., 2022) innovatively 

designed a variable-radius Reeds-Shepp curve, integrating it with segmented Bessel curves and gradient 

descent techniques to ensure path smoothness. Concurrently, Tang et al. (Tang et al., 2021) synergized the 

artificial potential field method with the Hybrid A* algorithm, collectively mitigating discontinuities in curvature 

and improving navigational safety. Regarding search efficiency optimization, Tian et al. (Tian et al., 2023) 

augmented the heuristic function through distance field mapping, whereas Cao et al. (Cao et al., 2023) refined 

heuristic value acquisition by incorporating bidirectional path search strategies. Qin et al. (Qin et al., 2024) 

introduced collision risk cost into node extension mechanisms, and Li (Li, 2024) proposed an obstacle feature 

extraction method via raster map preprocessing to optimize ant colony algorithms. Furthermore, Sedighi et al. 

(Sedighi et al., 2019) enhanced path exploration efficiency by integrating Voronoi diagrams with the Hybrid A* 

framework. Although the Hybrid A* algorithm has made significant progress in both path quality and search 

efficiency, the existing methods still face challenges in grain depot scenarios. Especially in the complex 

environment of narrow aisles and many obstacles in the grain depot, the existing methods are still deficient in 

dynamically adjusting the resolution and the linkage between the step size and the distance to the obstacles. 

The original Hybrid A* algorithm has the problems of low node search efficiency, long time consumption 

and poor adaptability to narrow channels when planning paths in the grain depot scenario. In this paper, a 

Hybrid A* algorithm with variable node resolution and variable step size is proposed, which mainly makes 

reasonable design of the heuristic function, the actual cost function and reasonable improvement of the node 

extension method. Among them, the dynamic node extension method is evaluated with the distance cost based 

on the KD-Tree algorithm, which changes the static extension into the dynamic extension with variable 

resolution and variable step size, and improves the path search efficiency. 

 

MATERIALS AND METHODS 

Hybrid A* algorithm 

The Hybrid A* algorithm is a graph search algorithm improved from the A* algorithm, and its planned path 

takes into account the kinematic constraints of the vehicle, so that a path close to the global optimum can be 

planned. 
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The idea of Hybrid A* algorithm is the same as that of A* algorithm, both are heuristic search. The cost 

function of Hybrid A* algorithm is as follows: 

( ) ( ) ( )f n g n h n= +                                  (1) 

In equation (1), the defining domains of the cost function f(n), the actual cost g(n), and the heuristic function 

h(n) are all the nodes N in the search space, and the value domain R is a non-negative real number; where n 

is the current node, g(n) is the actual generation value from the starting node to the current node, and h(n) is 

the heuristic generation value from the current node to the goal point, and f(n) integrates the actual cost from 

the starting point to the current point and the estimated cost to the goal point. 

 The Hybrid A* algorithm searches as described below:  
First, the Hybrid A* algorithm (Cao, 2023) receives the start position, end position, and a 2D raster map 

containing vehicle position coordinates and heading angle information. It performs path planning within this 

static 2D raster map (Elfes, 1989), which includes obstacle data and passable areas. The algorithm initializes 

an empty Open list and Closed list to manage the search nodes and inserts the start node into the Open list. 

Next, the algorithm selects the current node for expansion based on the heuristic cost to the target point, 

choosing the node with the lowest cost function value f(n) from the Open list. It then checks whether this node 

can be connected to the goal using an obstacle-free Reeds-Shepp curve (Reeds & Shepp, 1990). If a valid 

connection is found, the curve is accepted as the final path, and the algorithm terminates. If no direct 

connection is possible, the current node is moved to the Closed list and treated as a parent node. Child nodes 

are generated based on vehicle kinematic constraints, and the cost function f(n) is calculated for each. These 

child nodes are then added to the Open list. The process repeats, expanding nodes, checking for connections, 

and updating the Open and Closed lists, until either a valid path is found or the Open list is empty. The overall 

workflow of the algorithm is illustrated in Fig. 1. 

 

Fig. 1 - Flowchart of Hybrid A* algorithm 
 

Improvements to the Hybrid A* algorithm 

 In order to solve the problems of low search efficiency and high time consumption in the original 

Hybrid A* algorithm when applied to complex grain depot scenarios with narrow aisles and numerous 

obstacles, an improved Hybrid A* algorithm is proposed.  
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 Firstly, a more effective design of the heuristic function and the actual cost function is implemented 

to enhance the accuracy and relevance of the path planning. Secondly, the KD-Tree algorithm (Ram & 

Sinha, 2019) is used for nearest neighbor and distance range search to compute the distance to the 

nearest obstacle. When multiple points have the same calculated distance and surrogate value, to ensure 

the smoothness and safety of the driving path, priority is given, based on the calcula tion results, to the 

point with a smaller angle relative to the current driving direction, or to the point that is farther away from 

the obstacle. At the same time, the calculated obstacle distance cost is fused into the node expansion 

process. Based on this distance, dynamic expansion with variable resolution and variable step size is 

applied, improving the efficiency of path searching. Finally, the Reeds-Shepp curve (Reeds & Shepp, 

1990) is used to generate the final path, ensuring it meets vehicle motion constraints and is optimal for 

driving. Combined with the vehicle schematic shown in Fig. 2, the Hybrid A* algorithm is specifically 

improved in the following ways: 

 
Fig. 2 - Schematic diagram of the vehicle 

 

Heuristic function design 

In Hybrid A* algorithm, the heuristic function plays a key role to estimate the heuristic generation value 

from the current node to the goal point to help the path search. To satisfy the vehicle kinematics and 

environmental constraints, two heuristic functions are used in parallel and the larger value of the two is selected 

as the heuristic search value as shown in equation (2). 

ℎ(𝑛) = max{ℎ1(𝑛), ℎ2(𝑛)}                                       (2) 

In equation (2), the domain of definition of h1(n) and h2(n) is the set N of all nodes in the search space, 

where each node n ∈ N contains the position coordinates (x, y) and the heading angle θ, and the value domain 

R is a nonnegative real number; where h1(n) is the first heuristic function that considers the kinematic 

constraints of the vehicle while ignoring the environmental obstacle constraints. When considering the 

kinematic constraints of the vehicle, it is necessary to incorporate factors such as minimum turning radius and 

speed into the heuristic function. This ensures that the planned path aligns with the vehicle’s actual motion 

capabilities and avoids generating infeasible trajectories. Typically, this is achieved by using Reeds-Shepp 

curves to compute the shortest feasible path from the current node (xn, yn, θn) to the goal point (xg, yg, θg). 

The length of this path serves as the first heuristic function, denoted as h1(n). The second heuristic function, 

h2(n), takes into account environmental obstacle constraints while ignoring the vehicle’s kinematic limitations. 

To enable obstacle avoidance, an obstacle distance field is introduced into the heuristic. The A* algorithm is 

used to evaluate the distance between the path and surrounding obstacles, where greater distances yield 

higher heuristic values. This steers the path away from obstacles, generating a safer route from the current 

node (xn, yn, θn) to the goal point (xg, yg, θg). The length of this path defines the value of the second heuristic 

function, h2(n). Here, n represents the current node, g is the goal point, (x, y) are the node coordinates, and θ 

is the heading angle. 

h1(n) incorporates the feasible steering range of the Reeds-Shepp curve, helping to avoid dead ends 

where the vehicle cannot turn around. In contrast, h2(n) performs a search on the raster map using the A* 

algorithm, enforcing obstacle avoidance by utilizing obstacle grid markers. The combination of these two 

heuristics ensures that the planned path remains clear of hazardous areas. As a result, the final driving path 

not only complies with the vehicle’s kinematic constraints but also effectively navigates around environmental 

obstacles. 
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Cost function design 

In order to avoid unnecessary steering and reversing of the vehicle, it is necessary to ensure the 

continuity of the search path. In this paper, a penalty term is added for steering and reversing in the cost 

function to make the planned path more continuous. 

The actual cost of each child node ni(xi, yi, θi) in the search path of the Hybrid A* algorithm is shown in 

equation 3; where the child node ni is a new node generated by expanding from the current node through 

vehicle kinematics constraints. 

( ) ( ) ( ) ( )

( )

( )

1 2i p turn reverse

turn i p

reverse

g n g n g n g n

g n

g n L

 

 

= +  + 


= −


=

                   (3) 

In equation (3), gi(n) is the generation value of child node ni, gp(n) is the generation value of parent node 

np, gturn(n) is the vehicle steering penalty coefficient, greverse(n) is the vehicle reversing penalty coefficient, L is 

the length of the variable step length, θ is the heading angle, and ω1, ω2 are the weighting coefficients. Through 

several experiments, the parameters are adjusted according to the needs of vehicle driving in different 

scenarios, usually ω1 > 1 and ω2 > 1 (Wilt & Ruml, 2012). 

In the designed cost function, gturn(n) represents the penalty associated with changes in the heading 

angle at a path point - that is, the angle between the vehicle’s direction of movement and the X-axis of the 

global coordinate system. This change reflects a shift in the vehicle’s actual trajectory. By applying a penalty 

for turning, the number of steering actions is reduced, thereby improving the smoothness of the planned path. 

The corresponding weight ω1 can be flexibly adjusted based on the specific application scenario; for instance, 

if frequent steering is undesirable, a higher value of ω1 can be used. Similarly, greverse(n) represents the penalty 

for reverse driving. This is combined with the variable step length L to reduce the number of backward steps 

in the path, thereby encouraging forward motion. The weight ω2 can also be flexibly adjusted; for example, if 

reversing is permitted but should be minimized, a higher value of ω2 can be applied. By designing the cost 

function in this way, the planned path can be adapted to meet different driving requirements, balancing 

between path smoothness, forward motion preference, and scenario-specific constraints. 

 

Node Extension Method Design 

Although the original Hybrid A* algorithm satisfies vehicle kinematics and can generate extended 

trajectories based on these constraints, it expands nodes using a fixed resolution and fixed step size. This 

approach limits the diversity of path options, making it difficult to approximate optimal paths, reduces the 

flexibility of the search process, and results in high computational cost. Consequently, the node expansion 

process - where the current node generates a series of potential new nodes based on vehicle kinematics and 

the algorithm’s search strategy - becomes time-consuming and inefficient. To address these issues, the node 

expansion method is improved by incorporating the distance dnearest(n) from the current node to the nearest 

obstacle, calculated using the KD-Tree algorithm. A dynamic node expansion strategy is proposed, which 

adjusts both the resolution and step size according to dnearest(n). This enhancement increases the flexibility of 

node expansion in the Hybrid A* algorithm and reduces extension time. 

KD-Tree is a tree-based data structure designed for storing and efficiently retrieving points in k-

dimensional space, enabling fast nearest neighbor searches (Bi et al., 2022). When using conventional 

methods to calculate the nearest distance (i.e., the minimum distance from the current node to an obstacle), it 

is necessary to compute the distance to each obstacle and compare the results, which is inefficient and yields 

poor performance. To address this, obstacles in the map are structured into a 2D KD-Tree, allowing both 

nearest neighbor and range searches between the current node and surrounding obstacles. By applying the 

KD-Tree algorithm within the 2D raster map, the nearest distance from an expanding node to nearby obstacles 

can be quickly determined, significantly improving the efficiency and safety of the path search. 

In this context, obstacles refer to static objects that obstruct vehicle movement, and their positions in 

the 2D raster map are represented as coordinate points (i.e., obstacle coordinates).  
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The nearest distance between a node and an obstacle is calculated using the Euclidean distance 

formula: √(𝑥2 − 𝑥1)
2 + (𝑦2 − 𝑦1)

2  which represents the straight-line distance between two points. The 

implementation process is illustrated in the flowchart shown in Fig. 3. 

 
Fig. 3 - Flowchart of KD-Tree algorithm implementation 

 

Based on the nearest distance dnearest(n) between the current vehicle node and the nearest obstacle, 

calculated using the previously constructed 2D KD-Tree of the obstacle data, the raster map can be globally 

partitioned into different regions according to dmax and dmin. Specifically, when 0 < dnearest(n) < dmin, the node is 

considered to be within a collision region, as illustrated in Fig. 4. 

 
 

Fig. 4 – Schematic diagram of the region 

 

The value of dnearest(n) is used to determine which region the vehicle occupies along the planned path. 

Simultaneously, the variable resolution K and variable step length L are linked to the nearest obstacle distance 

dnearest(n), enabling a dynamic adjustment of the node expansion strategy. As dnearest(n) changes, the search 

mode for node expansion is dynamically modified. Upper and lower bounds are defined for both the resolution 

and step length, and their values are adjusted in real time using Equations (4), (5), and (6). This adaptive 

approach allows the algorithm to select the most suitable node expansion mode based on the surrounding 

environment, significantly enhancing the efficiency of the path search. 

( )

( )

( )

min

min 1 1 min max

min

max nearest

nearest

max nearest

K d d n

K K a b d d n d

K d n d




= +   

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      ， 

， 

      ， 0

                   (4) 
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min 2 2 min max

min min

max nearest

nearest

nearest

L d d n

L L a b d d n d

L d n d



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

 

      ， 

， 

      ， 0

                   (5) 

where the values of 1a , 2a , 1b , 2b  are shown in equation (6): 
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In the above, dmin is the minimum safe distance from the obstacle and dmax is the maximum safe distance 

from the obstacle. In equation (5), Kmax is the maximum discretization level of the variable resolution during 

node expansion and Kmin is the minimum discretization level. Similarly, in Equation (6), Lmax and Lmin represent 

the maximum and minimum values, respectively, of the variable step length used during node expansion. 

Therefore, after obtaining the vehicle position in the path, the algorithm determines whether the vehicle 

collides with the obstacle through dnearest(n). If in the collision-free region, the algorithm uses the resolution of 

the minimum discretization and the step size of the maximum length for node extension, and the resolution 

and step size of the node extension process if the obstacle is encountered in the search path will be changed 

with the change of the nearest distance dnearest(n). Fig. 5 shows the schematic diagram of dynamic extension, 

in which black squares are obstacles, green circles are collision-free regions, and red circles are dangerous 

collision regions. Fig. 6 shows the comparison diagram before and after the improved node extension, in which 

the blue box is the starting point of the vehicle, the red box is the end point of the path, the black square is the 

obstacle, the white grid part is the passable area, and the red track is the node trajectory. This improved node 

extension method can reduce the collision probability and improve the path accuracy by increasing the 

resolution discretization of the search path and decreasing the step length in the narrow channel and complex 

environment of the granary; in the normal environment of the granary, it can reduce the number of nodes to 

be searched and accelerate the search speed by decreasing the resolution discretization of the search path 

and increasing the step length. This not only improves the search efficiency of the Hybrid A* algorithm, but also ensures 

that the vehicles search over long distances and narrow aisles, further guaranteeing the safety of the path. 

 

 
Fig. 5 - Schematic diagram of dynamic node extension 

 
       (a) Dynamic node extensions not used     (b) Using dynamic node extensions  

      Fig. 6 - Comparison of planning before and after improving the way of extension nodes 
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Table 1 
Comparison of dynamic node extension data 

Title Dynamic node extensions not used Using dynamic node extensions 

Number of nodes/piece 843 49 

Search time/s 1.95 0.62 

 

From the comparison data in Table 1, it can be concluded that the use of dynamic extension nodes 

reduces the number of search nodes by 94% and the search time by 68% compared to not using dynamic 

extension. The path search efficiency of the improved Hybrid A* algorithm can be improved by using dynamic 

extension nodes. 
 

Search Path Fitting 

It may not be possible to search the exact target point pose by the improved node extension approach, 

and in this paper, the Reeds-Shepp curve, which takes into account the vehicle kinematics constraints, is used 

for the final path search fitting. As shown in Fig.7, the blue box is the starting point, the red box is the end point, 

the black square is the obstacle, and the red dashed line is the Reeds-Shepp search curve. When the Hybrid 

A* algorithm is extended to the current node and the target point, it will use the Reeds-Shepp curve for path 

search; if there is no collision with obstacles during the path fitting process, the fitted path is a valid path to 

stop searching; otherwise, it continues to use the Hybrid A* algorithm to conduct path searching until a drivable 

path is obtained. 

 
Fig. 7 - Schematic diagram of Reeds-Shepp curve path search fitting 

RESULTS 

Algorithm Testing 

To verify the effectiveness and feasibility of the proposed algorithmic improvements, two types of 

obstacle distribution maps, simple and complex, were carefully designed within environment maps featuring 

diverse topologies. These maps included narrow passages and multi-obstacle layouts typical of grain depot 

scenarios. Based on these two simulated grain depot environments, the performance of the original Hybrid A* 

algorithm and the improved version proposed in this study was evaluated. The comparison focused on two 

key indicators: search time and number of search nodes, allowing for a comprehensive analysis of algorithmic 

performance. The experiment was conducted using MATLAB R2020a. The simulated vehicle parameters are 

as follows: a length of 4.0 m, a width of 1.6 m, a wheelbase of 2.75 m, and front and rear overhangs of 1.0 m 

each. The maximum turning angle of the front wheels is 0.6 rad. The simulation environment is a 50 m × 50 m 

raster map. The vehicle’s starting position and orientation, as well as the distribution of obstacles, are illustrated 

in Fig. 8 and Fig. 9. In the figures, the blue box indicates the vehicle’s starting position, the red box marks the 

target position, black squares represent obstacles, white grids denote traversable areas, and the red line 

shows the trajectory through the path nodes. According to the obstacle layout, Fig. 8 represents a simple map 

with a sparse and regular distribution of obstacles, while Fig. 9 depicts a complex map characterized by a high 

density and irregular distribution of obstacles. The simulations were performed on a Windows 10 platform with 

an Intel i5-1135G7 processor and 16 GB of RAM. MATLAB R2020a was used to simulate the proposed 

algorithm in the context of two grain depot environments. In both scenarios, the starting and target positions 

remained fixed, and the obstacle configuration was unchanged. Under these conditions, the generated path 

trajectories were largely consistent across multiple runs. Performance metrics such as the number of nodes, 

search time, and path length were evaluated based on the average results from more than ten simulation trials. 
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   (a) Original Hybrid A* algorithm            (b) Improved Hybrid A* algorithm 

Fig. 8 - Comparison of simple map path planning  

 

 
       (a) Original Hybrid A* algorithm            (b) Improved Hybrid A* algorithm 

Fig. 9 - Comparison of complex map path planning  

 

Table 2 

Simple map simulation test data comparison 

Algorithm Number of nodes/piece Search time/s Path length/m 

Original Hybrid A* 301 0.99 66.2 

Improved Hybrid A* 49 0.62 71.4 

 

Table 3 

Complex map simulation test data comparison 

Algorithm Number of nodes/piece Search time/s Path length/m 

Original Hybrid A* 191 1.66 64.1 

Improved Hybrid A* 37 0.72 71.5 

 

As shown in Table 2 and Fig. 8, in the setup of simple grain depot map, the improved Hybrid A* algorithm 

reduces by 83% and 37% in the number of search nodes and path search time, respectively, compared to the 

original Hybrid A* algorithm. As shown in Table 3 and Fig. 9, the improved Hybrid A* algorithm reduces the 

number of search nodes and path search time by 80.6% and 56.6%, respectively, compared with the original 

Hybrid A* algorithm in the setup of complex grain depot maps. The simulation results show that the improved 

Hybrid A* algorithm has a significant improvement in the number of search nodes and the search path time 

compared to the original Hybrid A* algorithm in the setup of two kinds of maps of grain depot environments, 

but in terms of path length, the improved algorithm takes vehicle kinematics constraints and collision avoidance 

into consideration when planning paths and chooses paths more in line with the driving requirements, so there 

is no substantial enhancement. The efficiency order of the original and improved algorithms may be different 

under different grain depot obstacle topologies.  
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When the distribution of obstacles is sparse and the shape is regular, the performance of the two 

algorithms may be similar; however, when the distribution of obstacles is dense and the shape is complex, the 

improved algorithm may show higher efficiency. 

 

Real-vehicle Verification 

In order to further verify the effectiveness and feasibility of the improved Hybrid A* algorithm, the test 

vehicle used in this paper is an intelligent grain transfer vehicle conforming to the Ackermann steering model 

(Ren et al., 2009), with a vehicle length of 4.0 m, width of 1.6 m, height of 2.2 m, wheelbase of 2.75 m, a 

minimum turning radius of 5.5 m, and a maximum turning angle of 0.54 rad at the front wheels, and is equipped 

with 16-wire LIDAR. RTK inertial guidance, millimeter wave radar and other sensors are shown in Fig.10 (a). 

Tested using the ROS operating system under Ubuntu 18.04, the original planning algorithm in the ROS 

system was replaced with the improved Hybrid A* algorithm and the original Hybrid A* in the form of the ROS 

plugin, and then experimental testing was carried out. The map used for navigation is constructed by RTK 

inertial guidance acquisition of road boundary points, and is processed into the raster map needed in the ROS 

system through image processing. The experimental results are shown in Fig. 10, the blue line area in (b) is a 

selected part of the grain depot scene, the black part in (c) and (d) is the obstacle, the green square is the 

starting point, the blue square is the end point, and the yellow line is the planned trajectory. As can be seen in 

Fig. 9, both Hybrid A* algorithms can plan a drivable path. In terms of search time, the original Hybrid A* 

algorithm takes 25.34s and the improved Hybrid A* algorithm takes 9.76s, and the improved algorithm 

improves 61.4% compared to the original one. In terms of the number of search nodes, the original algorithm 

searches for 34 nodes and the improved algorithm searches for 16 nodes, which is 52.9% higher compared 

to the original algorithm. In terms of the path length, the original algorithm and the improved algorithm plan a 

length of 80.85m and 80.73m, respectively, with no significant improvement. The results show that the 

improved Hybrid A* algorithm proposed in this paper is effective in improving the path search efficiency and 

safety in the presence of narrow aisles and the complex environment of the grain depot scenario. 

 

 
(a) Test vehicle                                    (b) Test scenarios                                    

 

 
(c) Original Hybrid A* algorithm planning results      (d) Improved Hybrid A* algorithm planning results 

Fig. 10 - Real vehicle validation results 
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CONCLUSIONS 

In this paper, a Hybrid A* algorithm based on variable resolution and variable step size is proposed for 

the deficiencies of the original Hybrid A* algorithm in the grain depot scenario. Firstly, by introducing weight 

coefficients and penalty terms, the heuristic function and cost function are reasonably designed to reduce the 

number of times that the vehicle turns and reverses in path planning. Secondly, combining KD-Tree to calculate 

the distance cost between nodes and obstacles, the resolution and step size are dynamically adjusted to 

realize the flexibility of node extension. Finally, in order to accurately locate to the target position, Reeds-Shepp 

curves are used for path search fitting to ensure the accuracy of the planned path. Simulation results show 

that the improved Hybrid A* algorithm reduces 83% and 37% in simple maps compared to the original Hybrid 

A* algorithm in terms of the number of search nodes and planning elapsed time, respectively. In complex maps, 

the reduction is 80.6% and 56.6%, respectively. The results of the real-vehicle experiments show that the 

improved Hybrid A* algorithm reduces the number of search nodes and planning time by 52.9% and 61.4%, 

respectively, compared with the original Hybrid A* algorithm. In summary, the improved Hybrid A* algorithm 

proposed in this paper significantly improves the path search efficiency of the intelligent grain transporter in 

the grain depot scenario by dynamically adjusting the resolution and step size, combining the KD-Tree distance 

cost with the Reeds-Shepp curve search fitting, which further validates the feasibility of the improved algorithm. 
Future research topics may include improving the adaptability of the algorithm for real-time planning in dynamic 

obstacle environments as well as conducting experiments in obstacles with different topologies to expand the 

scale and diversity of the experiments, while considering vehicle travel time and energy consumption to 

enhance the effectiveness of the improved algorithm. At present, although the improved algorithm has been 

experimentally validated, its in-vehicle validation needs further improvement. At this stage, the research 

focuses on being able to improve the search efficiency when planning paths in grain depot scenarios, and 

subsequent research will be further expanded on this basis. 
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